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It is well known that nonstationary, rapidly mixing microarcs, supported on a dividing 
cell of the cathode spot, whose number is proportional to the total discharge current, form 
on the surface of electrodes coated with an oxide film under conditions of vacuum arcs and 
low pressures of the surrounding gas [i]. In addition, the cells of the spot repel one 
another, which is caused by the characteristic magnetic fields of the cells and the spot 
[i, 2], and propagate over the entire surface of the electrode. When the pressure of the 
surrounding gas is raised the mutual repulsion of the cells becomes weaker and then vanishes, 
and the microarcs are attracted to one another by ampere forces acting between currents flow- 
ing in parallel directions, which gives a compact arrangement of the cells of the spot and 
gives rise to the formation of virtually stationary current attachment on the surface of the 
electrode. 

Dispersal of the dividing microarcs on the surface of a mesh electrode with a circular 
cross section i cm in diameter, placed on one wall of the dielectric section of a shock tube, 
was observed under conditions of supersonic flow of an argon plasma with strong shock waves 
in a shock tube with flow velocities of 3"105 cm.sec -I at a temperature of ~8000~ and under 
a pressure of -0.15 MPa. The other electrode (the anode) was located on the opposite wall of 
the section. The electrodes were connected in the circuit with a precharged capacitor bank, 
whose discharge through the interelectrode gap was initiated by the leading edge of the ion- 
izing shock wave at the location of the electrodes. 

Figure 1 shows a typical photoscan of the luminescence from the cells of the cathode 
spot on the surface of the wall electrode and the corresponding phased oscillogram of the 
discharge current. According to the photoscan, the dispersal of the cells starts deep in the 
region of the shock-compressed flow of argon plasma. The start of the dispersal (branching 
of the tracks) of the cells, as established with the help of a film temperature sensor, cor- 
responds to the moment (~ii0 ~sec) at which turbulence appears in the nonstationary laminar 
boundary layer behind the shock wave at the location of the electrode on the wall of the mea- 
suring section. 

The result obtained, however, is not consistent with the well-known fact that for gas 
pressures of the order of one atmosphere there is no mutual repulsion of the cells of the 
cathode spot [2]. In this case, the dispersal of the microarcs is probably caused not by 
the mutual repulsion of the cells in the characteristic magnetic field of the cathode spot, 
but rather it is determined by the action of chaotic turbulent pulsations of the gas velocity 
in the boundary layer, which in spite of the attractive ampere forces acting between the 
microarcs, smear the compact group of cathode spots, forming under the conditions of a laminar 
boundary layer preceding turbulence; which is what explains the character of the observed 
photoscan after ii0 ~sec. 

It is conjectured that the dispersal of the microarcs under the action of the turbulent 
pulsations can be described by diffusion processes analogously to [3] under the conditions 
of mutual attraction of microarcs by ampere forces. To simplify the analysis it is assumed 
that the current in a separate microarc remains constant and the number of microarcs remains 
constant during the process of dispersal, so that the microarcs are regarded as stationary 
formations. 

We shall write the equation of diffusion of microarcs, having the form of the Fokker- 
Planck equation, in the cylindrical centrosymmetric case as 
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where n is the density of microarcs, D and b are the turbulent analogs of the coefficient of 
diffusion and mobility, f is the ampere force, r is the radius, and t is the time. The func- 
tions D and b, as usual, are related by the Einstein relation 

Dlb = r ( 2 )  

(T is the turbulent analog of the temperature). The ampere force acting on the straight 
electric current I of length s in the magnetic field H has the form f = -IHs (the minus 

sign indicates attraction). From the Maxwell's equation rot H = 43 . -[-3 we find 

H 2 f ]dS 
c r  

H e r e  j i s  t h e  c u r r e n t  d e n s i t y ;  t h e  i n t e g r a t i o n  e x t e n d s  o v e r  a c i r c l e  w i t h  r a d i u s  r .  I f  I 
i s  t h e  c u r r e n t  i n  o n e  c e l l  o f  t h e  s p o t ,  t h e n  a s s u m i n g  t h a t  I = c o n s t ,  w h i c h  a g r e e s  w i t h  t h e  
e x p e r i m e n t a l  d a t a  o f  [1 ]  we o b t a i n  

r 

0 

We w r i t e  Eq.  ( 1 ) ,  s u b s t i t u t i n g  ( 2 )  and  ( 3 ) ,  a s  

where for T = const z = - -  
4n (IIc)2l 

)] o,~ I ~ [ / a,~ " f npap e--f ---- -7- ~ -  LrD L~-r + x T ,~ 
0 

= const > O. 

In what follows, to simplify the analysis, aside from the condition ~ = const it is 
assumed that D = const. 

Equation (4) must be solved for n(r, t) under the conditions 

n(r, O) --- no(r), On~Or(O, t) = O, n(oo, t) = O; 

; n 2 ~ r d r = c o n s t = N  
o 

(N is the total number of microarcs). 

We seek the self-similar solution of (4) in the form 

n = ~ ( t ) v ( ~ ) ,  r = ~ ( t ) ~  

(v and B are the dimensionless values of the function and the argument). Substitution of 
(6) into (4) gives 

[( I] 0 
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(the prime indicates differentiation with respect to t). 
lation 

~'/~ 
~,i~ = const = 2~ 

The condition (5) implies the re- 

(8) 

while the first integral of (7) is 

(C is the integration constant). 

+ •  ~ + ---5--tl ~v 
0 

For n(~, t) = 0 C = O, whence we obtain the equation 

----C 

av l ~d~  v = 0 .  (9 )  
0 

The c o n d i t i o n s  f o r  s e l f - s i m i l a r i t y  f o l l o w s  from (8) and (9 ) :  ~r = const = ' ~ > 0 ,  ~ r  
const = ~ > 0, the latter condition gives the usual result ~ = ~ if the integration con- 
stant equals zero. 

Introducing ~ =~= and the functions ~ = ~ ~1, ~ = ~d~, we obtain 
0 

d; \ xd~ ] + (l + ?~) = o; ( l o )  

~ +(~ +,_~_)d~ =o, 
d; ~ -~r (11) 

where ? = ~v(0)>0. The integral representation 

0 

follows from (ii). By definition X(0) = i, ~(0) = 0, and from (12), since X ~ 0, we have 
l(=) = 0. The undetermined constant y is determined from the condition (5), which has the 
form 

(e = xN/4z). (13) ~(~)= ~d~-- ~ =-~ 
0 

The fact that the solutions of Eqs. (i0) and (ii) do indeed exist can be seen from the 
iteration procedure according to (12): 

0<L<I, 0<exp[--(l +~)~]<L<exp(--~)<l~ 

~xp [ -  (1 + ~) ;~ < e~p - -  ; - -  ~ o ~ (-- ~) ~- e~ < 0 
, 0 

{ i +1 < X < e x p  - - ~ - - ~  e x p [ - - ( t + ~ ) g l l n  dg < e x p ( - - ~ ) < l  
0 

etc. The solutions of these equations in quadratures, by virtue of their nonlinearity and 
apparently the absence of group properties of the transformations (except the substitution 

+ 7X, ~ +YU, eliminating y), present a problem. We note that the solution of (i0) can be 
constructed in the form of a power series 

z = Y, a ~ ; % I  (% = 1)~ 
k=O 

h 

ak+x = -- a~ -- ? ~ c~ak-ta~ ( k ' ~  0). 

(i~) 

Numerical calculations of X in the function ~ were performed by solving Eq. (I0) by the 
Runge-Kutta method. Calculations of X using (14) gave identical results. Figure 2 shows 
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the dependence of the normalized density k/6 on the dimensionless coordinate $ = r/(2/~) 
for the parameter X; Fig. 3 shows the dependence of the constant 6 on e. For the absent 
ampere force (~ = 0), evidently, k = exp (_$2) and 6 = i. Taking into account ampere forces 
causes the source function ~/6 to peak at the origin of coordinates, but for any intensity 
of the ampere interaction the diffusive dispersal of the ensemble of microarcs is not blocked 
by this interaction, and a limiting stationary distribution density of microarcs does not 
exist. This is a consequence of the fact that the ampere force, passing through a maximum, 
approaches zero at infinity. 

Thus it has been demonstrated that the diffusion mechanism for dispersal of a compact 
distribution of microarcs by turbulent pulsations on the surface of an electrode is in prin- 
ciple possible. 

We thank P. P. Lazarev for assistance in performing the calculations. 
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DISCHARGE ACCOMPANYING LEAKAGE OF MAGNETIC FLUX FROM PLASMA 

INTO AN INSULATOR 

S. F. Garanin UDC 533.95 

In many problems, such as the confinement of plasma with a magnetic field by walls, com- 
pression of a magnetized plasma with liners, etc., losses of magnetic flux and plasma owing 
to diffusion of the field and heat conduction to the wall must be taken into account. The 
role of the discharge arising in the plasma as magnetic flux leaks out of it must be espe- 
cially significant for a hydrogen plasma, whose conductivity, owingto the weak effect of 
radiative processes, can be large compared with the conductivity of the plasma in a magneti- 
cally compressed discharge [i] arising on the surface of the wall. In this case, if the 
plasma density is too high, the resistance of the discharge will be determined by the dis- 
charge along the hydrogen plasma. 

We shall study the development of this discharge in the case of a hydrogen plasma with 
a magnetic field bounded by a rigid nonconducting insulating wall. This problem was solved 
qualitatively in [2, 3], and as a result the effective diffusion coefficient for a plasma with 

~ 1 (6 = 16~NoT0/H~ is the ras of the thermal pressure of the plasma to the magnetic 
pressure, and No, To, H0 are the density, temperature, and magnetic field in the plasma far 
from the discharge zone) D ~ cH0/4~eN 0, and for B ~ i, D ~ cT0/10eH 0. 

In this paper the structure of the current layer near the wall is studied quantitatively 
and the boundary condition with whose help the effect of this discharge on the motion of the 
plasma in the entire volume can be described is formulated. 

Let all quantities depend on the coordinate X and the time t, let the magnetic H and 
electric E fields be perpendicular to one another and the X axis, and let the characteristic 
times be long compared with the gas-dynamic times, so that there is enough time for the total 
pressure in the system to be equalized: 

2 N T  + H~/8~  = Po ~ 2NoT0 + H~d 8~" ( 1 ) 

The p l a s m a  d e n s i t y  in  t h e  main  vo lume  i s  a s sumed  t o  be  low compared  w i t h  t h e  d e n s i t y  o f  t h e  
d i s c h a r g e  zone  n e a r  t h e  w a l l .  I n  t h i s  c a s e ,  a s  shown i n  [ 2 ] ,  t h e  p r o b l e m  i s  q u a s i s t a t i o n a r y ,  
i . e . ,  t h e  t i m e  d e r i v a t i v e s  in  t h e  m a g n e t i c  and e l e c t r i c  f i e l d  e q u a t i o n s  and t h e  e q u a t i o n  o f  
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